Four-, Five-, and Six-Coordinate Complexes Containing 1,1,7,7-Tetraethyldiethylenetriamine

Zvi Dori and Harry B. Gray¹

Contribution from the Department of Chemistry, Columbia University, New York, New York 10027. Received November 24, 1965

Abstract: Syntheses, properties, and electronic structures of Ni(Et₄dien)X₂ (Et₄dien = 1, 1, 7, 7-tetraethyldiethylenetriamine; X = Cl, Br, I, $Co(Et_4 dien)Cl_2$, and $Rh(Et_4 dien)Cl_3$ are reported. The spectral and magnetic properties of Ni(Et₄dien)X₂ depend on the nature of the solvent and the concentration of X^- . The Ni(Et₄dien)Cl₂ complex is diamagnetic and presumably square planar in the solid state and in ethanol solution. This complex exhibits paramagnetism in several organic solvents, including CH₃CN, DMF, and acetone. The Co(Et₄dien)Cl₂ complex is paramagnetic both in the solid state and in solution. It is suggested that Ni(Et₄dien)Cl₂ exists as a high-spin, five-coordinate species in certain solutions and that Co(Et,dien)Cl₂ is five-coordinate and high-spin both in the solid state and in solution.

Decent studies² of transition metal ions in five-Recondition have dealt largely with d⁸ complexes containing good π -acceptor ligands such as CO³ and $SnCl_3^{-4}$ or ligands with heavy donor atoms such as phosphorus and arsenic.⁵⁻⁸ The d⁸ five-coordinate complexes containing these types of ligands are invariably low-spin, in part because the interelectronic repulsions in molecular orbitals derived from d valence orbitals are greatly reduced from free-atom values.

A possible strategy to obtain examples of high-spin, five-coordinate complexes is to employ simple σ bonding but very bulky nitrogen- and oxygen-donor chelating groups, so that the tendency to attain sixcoordination with central metals such as Ni(II) and Co(II) is suppressed. In the course of our studies, plexes.¹⁰ The present paper reports our studies of complexes of Ni(II), Co(II), and Rh(III) containing the bulky ligand 1,1,7,7-tetraethyldiethylenetriamine (Et₄dien).

Experimental Section

Preparation of Ni(Et₄dien)Cl₂. NiCl₂·6H₂O (3 g) was dissolved in 75 ml of absolute ethanol. The clear green solution was heated to about 60° and 3.3 g of the ligand was added slowly with continuous stirring. To the resulting red solution, LiCl (0.3 g) was added. The solution was then evaporated to about 20 ml and filtered. The red crystals, which were obtained on cooling the solution to about -10° , were dissolved in ethanol and recrystallized from an ethanol-acetone solution to give a pure sample of Ni(Et₄dien)Cl₂. The complexes Ni(Et₄dien)Br₂ and Ni(Et₄dien)I₂ were prepared in the same manner. Analytical and physical data for these compounds are given in Table I.

Table I. Analytical Data and Physical Properties of the $M(Et_4dien)X_n$ Complexes

				C		N		X		H
Compound	Color	μ_{eff}, BM^a	Calcd	Found	Calcd	Found	Calcd	Found	Calcd	Found
Ni(Et ₄ dien)Cl ₂	Red	Diamagnetic	41.78	41.52	12.18	12.34	20.60	20.44	8.41	8.31
$Ni(Et_4 dien)Br_2$	Red-violet	Diamagnetic	33.42	33.30	9.68	9.88	36.79	36.70	6.74	6.69
Ni(Et ₄ dien)I ₂	Violet-blue	Diamagnetic	27.30	27.46	7.96	7.99	48.00	47.83	5.54	5.69
Co(Et ₄ dien)Cl ₂	Red-violet	4.71	41.74	42.11	12.17	12,23	20.58	20.12	8.41	8.39
Rh(Et ₄ dien)Cl ₃	Yellow-brown	Diamagnetic	34.15	33.95	9.88	9.83	24.99	24.85	6.86	6.95

^a All measurements were made at 20–23°.

Sacconi and co-workers reported examples of highspin, five-coordinate Mn(II), Co(II), and Ni(II) complexes containing substituted salicylaldimines.⁹ Also, Ciampolini, Nardi, and Speroni independently have used bulky triamine ligands to prepare high-spin, fivecoordinate Mn(II), Fe(II), Co(II), and Ni(II) com-

(1) Alfred P. Sloan Research Fellow.

- (2) Pertinent references are collected in the following reviews: J. A. Ibers, Ann. Rev. Phys. Chem., 16, 380 (1965); E. L. Muetterties and R. A. Schunn, Quart. Rev. (London), to be published.
- S. S. Bath and L. Vaska, J. Am. Chem. Soc., 85, 3500 (1963).
 R. D. Cramer, R. V. Lindsey, C. T. Prewitt, and U. G. Stolberg, *ibid.*, 87, 658 (1965). (5) G. S. Benner, W. E. Hatfield, and D. W. Meek, *Inorg. Chem.*, 3,
- 1544 (1964).
- (6) G. Dyer, J. G. Hartley, and L. M. Venanzi, J. Chem. Soc., 1293 (1965).
- (7) G. Dyer and L. M. Venanzi, ibid., 2771 (1965).
- (8) A. D. Westland, ibid., 3060 (1965).

Preparation of Co(Et_4 dien)Cl₂. CoCl₂·6H₂O (3 g) was dissolved in 75 ml of absolute ethanol. The solution was heated to boiling and 3.3 g of the ligand was added slowly. Very finely divided crystalline material precipitated immediately. The crystals of Co(Et₄dien)Cl₂ were filtered, washed with hot ethanol, and recrystallized from acetonitrile solution. The Rh(Et₄dien)Cl₃ complex was prepared in the same manner. Analytical and physical data for these compounds are given in Table 1.

Spectroscopic Measurements. Absorption spectra were recorded on a Cary 14 spectrophotometer using 1-cm path-length cells. Spectral grade solvents were used as received. Low-temperature spectra were also recorded on a Cary 14 spectrophotometer, using double-beam absorption cells designed and constructed in this laboratory.¹¹ Temperature control was accurate to $\pm 2^{\circ}$.

Magnetic Measurements. Magnetic susceptibilities were measured by the Gouy method, using solid Hg[Co(NCS)4] and nickel chloride solutions as calibrants.12

⁽⁹⁾ L. Sacconi, P. L. Orioli, and M. DiVaira, J. Am. Chem. Soc., 87, 2059 (1965); P. L. Orioli, M. DiVaira, and L. Sacconi, Chem. Commun. (London), 103 (1965); L. Sacconi, P. Nannelli, N. Nardi, and U. Campigli, *Inorg. Chem.*, **4**, 943 (1965).

⁽¹⁰⁾ M. Ciampolini, N. Nardi, and G. P. Speroni, Abstracts of papers for the meeting on "Mechanistic and Structural Aspects in the Chemistry of Metal Complexes," Bressanone, Italy, July 1965. (11) Details will be provided upon request.

Figure 1. Absorption spectra of Ni(Et₄dien)Cl₂ in different solvents: ——, acetone; -.-.., DMF; ---, CH₃CN; $- \times - \times -$, Nujol spectra (arbitrary units).

Conductance Measurements. Conductivities were determined on an Industrial Instruments Bridge Model RC16B2, using a cell calibrated with 0.010 M KCl solution.

Results

Ni(Et₄dien)X₂. The compound Ni(Et₄dien)Cl₂¹³ is a red, diamagnetic solid. As shown in Figure 1, a solid sample exhibits an electronic absorption maximum at 18,800 cm⁻¹. The X-ray powder patterns of Ni(Et₄dien)Cl₂ and [Pd(Et₄dien)Cl]Cl are identical, and it has been assumed that solid [Pd(Et₄dien)Cl]Cl contains square-planar Pd(Et₄dien)Cl⁺ groups.¹⁴ The Ni(Et₄dien)Br₂ and Ni(Et₄dien)I₂ complexes are also diamagnetic solids with X-ray powder patterns similar to that of Ni(Et₄dien)Cl₂ and low-energy electronic absorption bands at 18,300 and 17,550 cm⁻¹, respectively.

Table II. Conductance Data for the $M(Et_4dien)X_n$ Complexes

	Λ (cm ² mole ⁻¹ ohm ⁻¹) ^a				
Compound	Ethanol	DMF	Aceto- nitrile	Acetone	Nitro- meth- ane
Pd(Et ₄ dien)Cl ₂	51	100	118	Insoluble	Ь
Ni(Et ₄ dien)Cl ₂	50	57	50	4	40
Ni(Et ₄ dien)Br ₂	48	94	85	22	b
Ni(Et ₄ dien)I ₂	50	142	190	66	91
Co(Et ₄ dien)Cl ₂	14	18	14	10	b
Rh(Et₄dien)Cl ₃	4	8	b	b	b

^{*a*} All measurements were made at 28° on 0.0005 M solutions. ^{*b*} Not measured.

(12) B. N. Figgis and J. Lewis, "Modern Coordination Chemistry," J. Lewis and L. Wilkins, Ed., Interscience Publishers, Inc., New York, N. Y., 1960.

(13) The Ni(Et_idien)Cl₂ complex was first prepared by Dr. W. H. Baddley at Northwestern University. Dr. Baddley kindly supplied us with his sample of Ni(Et_idien)Cl₂; the physical properties of his sample and our sample are the same.

(14) W. H. Baddley and F. Basolo, J. Am. Chem. Soc., 86, 2075 (1964).

Conductances and magnetic moments are listed in Tables II and III, respectively. In ethanol solution

Table III. Magnetic Data for $Ni(Et_4dien)Cl_2$ and $Co(Et_4dien)Cl_2$ in Different Solvents

Compound	Ethanol	Ace- tone	DMF	Ace- toni- trile	Nitro- meth- ane	DMSO
Ni(Et₄dien)Cl₂ Co(Et₄dien)Cl₂	Diamagnetic 4.72	3.40 4.70	3.13 4.78	2.88 ^b	2.78 ^b	4.74

^a All measurements were made at 20-23°. ^b Not measured.

all three Ni(Et₄dien)X₂ complexes are diamagnetic and 1:1 electrolytes (molar conductances are compared with those of the [Pd(Et₄dien)Cl]Cl complex, which is known¹⁴ to be a 1:1 electrolyte). In acetone solution the Ni(Et₄dien)Cl₂ complex is essentially a nonelectrolyte and paramagnetic (3.40 BM). In other polar organic solvents Ni(Et₄dien)Cl₂ exhibits lower magnetic moments and higher molar conductances than observed in acetone solution. In most solutions the Ni(Et₄dien)Br₂ and Ni(Et₄dien)I₂ complexes have higher molar conductances than observed for Ni(Et₄dien)Cl₂. In DMF, Ni(Et₄dien)Br₂ and Ni(Et₄dien)I₂ are approximately 1:1 and 2:1 electrolytes, respectively.

The electronic absorption spectra of the three Ni(Et₄dien) X_2 complexes are listed in Table IV. The spectrum of each complex in ethanol solution is the same as observed in the solid state. However, in each case spectra in several other polar organic solvents differ markedly from the spectrum observed in ethanol solution.

 $Co(Et_4dien)Cl_2$. The red-purple solid $Co(Et_4dien)Cl_2$ is paramagnetic (4.71 BM) and exhibits electronic

Figure 2. Absorption spectra of $Co(Et_4dien)Cl_2$ in different solvents: -----, acetone; ----, EtOH; -----, Nujol spectra (arbitrary units).

absorption bands at 10,500, 15,200, and 19,300 cm⁻¹. Its X-ray powder pattern differs considerably from that of [Pd(Et₄dien)Cl]Cl. In solution, the Co(Et₄-dien)Cl₂ complex is essentially a nonelectrolyte and has magnetic moments that are nearly equal to the solid-state value.

resemble closely the spectrum observed for a solid sample in Nujol.

Discussion

Ni(Et₄dien) X_2 Complexes. The magnetic, spectral, and X-ray powder data for the Ni(Et₄dien) X_2 complexes

Table IV. Electronic Spectral Data for Ni(Et₄dien)X₂ in Different Solvents^a

Compound	Solvent	$\sim \nu_{\rm max}, {\rm cm}^{-1} \left(\epsilon_{\rm max}\right)$					
Ni(Et ₄ dien)Cl ₂	Ethanol			18,800 (80)			
	Acetonitrile	10,150 (15)	12,800 (15)	18,800 (80)	22,100 (60)		
	Acetone	10,000 (20)	12,500 (20)	18,900 (55)	22,150 (80)		
	DMF	10,100 (15)	12,700 (15)	18,850 (50)	22,500 (70)		
Ni(Et ₄ dien)Br ₂	Ethanol			18,300 (80)			
, -	Acetone ^b	10,100 (15)	12,700 (15)	18,300 (185)	21,650 (90)		
	Acetonitrile	10,000 (10)	12,900 (10)	18,200 (120)	21,750 (40)		
	DMF	8,700 (8)	14,700 (8)	18,200 (14)	23,350 (24)		
Ni(Et₄dien)I ₂	Ethanol			17,500 (80)			
、 · · ·	Acetoneb	10,500 (8)		17,400 (150)			
	DMF	9,200 (10)	15,300 (10)	, , , ,	26,000 (26)		

^a All solutions were 0.01 M in complex unless otherwise stated; spectral data were obtained at room temperature. ^b Solutions were 0.0025 M in complex.

Table V. Electronic Spectral Data for $Co(Et_4dien)Cl_2$ in Different Solvents

Solvent							
Ethanol	11,200 (18)	15,400 (58)	19,050 (60)				
Acetone	10,700 (20)	15,300 (80)	18,900 (57)				
DMSO	11,250 (15)	15,200 (54)	19,000 (40)				

The electronic absorption spectra of $Co(Et_4dien)Cl_2$ in Nujol, EtOH, and acetone are shown in Figure 2. Spectra in different organic solvents are set out in Table V. The spectra are essentially the same and suggest that the square-planar, low-spin Ni(Et₄dien)X⁺ complex is present in the solid state and in ethanol solution. The electronic absorption spectrum of Ni(Et₄dien)Cl₂ in acetone solution shows four principal d-d bands. At least part of the intensity of the band at 18,900 cm⁻¹ is probably due to the square-planar Ni(Et₄dien)Cl⁺ complex in low concentration. Since the positions and intensities of the principal d-d bands are not compatible with octahedral¹⁵ or tetrahedral¹⁶

(15) The three d-d bands at 10,000, 12,500, and 22,150 cm⁻¹ are too closely spaced to be due to Ni(II) in octahedral coordination. That is, the lowest energy band is too high energy and the highest energy band is too low energy for an octahedral Ni(II) complex of the type

coordination for Ni(II), the combined spectral, magnetic, and conductance data strongly support the assignment of a five-coordinate structure to the paramagnetic species in an acetone solution containing Ni(Et₄dien)Cl₂. The absorption spectra in other polar organic solvents show that both Ni(Et₄dien)Cl⁺ and Ni(Et₄dien)Cl₂ are present, with Ni(Et₄dien)Cl⁺ in higher mole ratios than in acetone solution. This is in agreement with the higher molar conductances and lower magnetic moments observed for these solutions. The behavior of Ni(Et₄dien)Cl₂ in these solutions can be summarized by the equilibrium

$$\begin{array}{ccc} \text{Ni}(\text{Et}_{4}\text{dien})\text{Cl}^{+} + \text{Cl}^{-} & & \\ \text{four-coordinate} & & \\ \text{four-coordinate} & & \\ \text{high-spin} & & \\ \text{high-spin} & & \\ \end{array}$$

Consistent with eq 1, addition of Et₄NCl to DMF, DMSO, or acetonitrile solutions containing Ni(Et₄dien)Cl₂ markedly increases the intensities of the bands at 10,000, 12,500, and 22,000 cm⁻¹. At high Cl⁻⁻ concentrations almost all of the complex is in the fivecoordinate form. The detailed dependence of the coordination structure on Cl- concentration was studied in DMSO solution. The initial state is a solution containing no Cl-, and a 1:1 mole ratio of $Ni(ClO_4)_2$ and Et_4 dien. The absorption spectrum of this solution, with bands at 9600 cm⁻¹ (ϵ 5), 14,600 (5), and 25,600 (12), is typical of Ni(II) in octahedral coordination, and we assume that an octahedral complex of formula Ni(Et₄dien)(DMSO)₃²⁺ is present. Conductance measurements support this formulation. On addition of 1 equiv of Et₄NCl, a new band appears at 18,800 cm⁻¹ (ϵ 20), and the other band maxima are 9800 cm^{-1} (ϵ 2) and 23,800 cm^{-1} (ϵ 10). At this point the major species in solution is presumably the squareplanar complex Ni(Et₄dien)Cl⁺, with Ni(Et₄dien)- $(DMSO)_{3^{2+}}$ and Ni(Et₄dien)Cl₂ in lower concentrations. After 2 equiv of Cl- has been added, all the bands can be assigned to two species, square-planar Ni(Et₄dien)Cl⁺ and five-coordinate Ni(Et_4 dien)Cl₂. Further addition of Cl⁻ to this solution simply intensifies the three "fivecoordinate" bands at the expense of the 18,800-cm⁻¹ band assigned to Ni(Et₄dien)Cl⁺. This behavior is expected from the equilibrium described by eq 1.

We suggest that the Ni(Et₄dien)Cl₂ complex is observable in stable four- and five-coordinate modifications owing to the bulky nature of Et₄dien. Apparently the stability of a six-coordinate structure is decreased relative to structures of lower coordination number. In this connection it is of interest to note the effect of the anion size on the solution behavior of Ni(Et₄dien)X₂ complexes. In acetone the Ni(Et₄dien)Br₂ complex has a higher molar conductance than observed for $Ni(Et_4dien)Cl_2$. This fact and the relatively high intensity of the 18,300-cm⁻¹ band suggest that in acetone Ni(Et₄dien)Br₂ exists mainly in the low-spin, square-planar form Ni(Et₄dien)Br⁺. In the relatively good coordinating solvent DMF, no five-coordinate form is observed. The electronic spectrum of Ni(Et₄dien)Br₂ in DMF indicates that the low-spin, square-planar complex $Ni(Et_4dien)Br^+$ and a sixcoordinate species are present. The spectrum of the six-coordinate species is different from that of Ni(Et₄dien) $(DMF)_3^{2+}$ (Ni(Et₄dien)(ClO₄)₂ in DMF solution), which shows bands at 9200 cm⁻¹ (ϵ 10), 15,300 (10), and 26,000 cm^{-1} (26). Since the bands due to the sixcoordinate complex are at slightly lower energy than those observed for Ni(Et₄dien)(DMF)₃²⁺, we suggest the formula Ni(Et₄dien)(DMF)₂Br⁺ for the six-coordinate complex. This formulation is in agreement with the molar conductance of Ni(Et₄dien)Br₂ in DMF.

In the case of the Ni(Et₄dien)I₂ complex, the conductance and spectral data in acetone solution suggest that Ni(Et₄dien)I₂ exists almost entirely in the low-spin, square-planar form Ni(Et₄dien)I⁺. In the relatively good coordinating solvent DMF, only an octahedral Ni(II) spectrum is observed. The high molar conductance and the absence of a low-energy, chargetransfer band indicate that there is no coordinated I⁻, and therefore the complex is logically formulated as Ni(Et₄dien)(DMF)₃²⁺. Independent evidence for this formulation is the fact that in DMF solution the spectra of Ni(Et₄dien)(CIO₄)₂ and Ni(Et₄dien)I₂ are identical.

The different solution behavior of the three Ni(Et₄dien) X_2 complexes may be attributed to the difference in anion size. For example, it is apparently very difficult to crowd two iodides into an inner-coordination sphere containing an Et_4 dien ligand bound to Ni(II). To further investigate this point we have examined halide substitution reactions in the square-planar complexes Ni(Et₄dien)Cl⁺, Ni(Et₄dien)Br⁺, and Ni(Et₄dien)I+ in ethanol solution. In ethanol, the coordinated chloride in Ni(Et₄dien)Cl⁺ is not replaced by Br⁻ or I⁻, even in solutions in which the latter ions are in great excess (10:1 mole ratios). This is most remarkable behavior in a square-planar system, because bromo and iodo complexes are usually more stable than an analogous chloro complex. Recall that Pd(Et₄dien)Cl⁺ reacts with Br- and I- to yield the bromo and iodo derivatives.¹⁴ Both Ni(Et₄dien)Br⁺ and Ni(Et₄dien)I⁺ react very rapidly with Cl⁻ in ethanol to give Ni(Et₄dien)Cl⁺. These reactions appear to go to completion even under initial conditions of a 1:1 mole ratio of Ni(Et₄dien)X⁺ and Cl⁻. As a final observation, Br^{-} rapidly and completely replaces I⁻ in Ni(Et₄dien)I⁺ in an ethanol solution initially containing a 1:1 mole ratio of the two reactants. From these data we infer the stability order Ni(Et₄dien)Cl⁺ > Ni(Et₄dien)Br⁺ > Ni(Et₄dien)I⁺. Although electronic factors are expected to shift the halide stability order in the direction of M-Cl > M-I in going from Pd(II) to Ni(II), the obviously *enormous* preference of Ni(Et₄dien)²⁺ for Cl- suggests that a large contribution to the relative instabilities of the bromo and iodo complexes is due to crowding of the coordinated anion by the bulky Et₄dien group. This crowding is presumably not as effective in the square-planar Pd(Et₄dien)X⁻ complexes, be-

 $[[]Ni(Et_4dien)(acetone)Cl_2]$. For comparison, D. M. L. Goodgame and L. M. Venanzi [J. Chem. Soc., 5909 (1963)] report d-d bands for $Ni(Me_4en)_2Cl_2$ in CH₃OH at 9390, 12,300, 15,750, and 25,850 cm⁻¹.

⁽¹⁶⁾ The spectrum of Ni(Et₄dien)Cl₂ in acetone solution bears no resemblance whatsoever to a typical tetrahedral Ni(II) spectrum. [For examples of tetrahedral Ni(II) spectra, see C. P. Smith, C. H. Liu, and T. R. Griffiths, J. Am. Chem. Soc., **86**, 4796 (1964).] The observed spectrum is not compatible with an interpretation involving Et₄dien behaving as a bidentate ligand in an acetone solution of Ni(Et₄dien)Cl₂. Further evidence inconsistent with a bidentate Et₄dien structure is the fact that the infrared spectra of Ni(Et₄dien)Cl₂ and Co(Et₄dien)Cl₂ has been found to have a five-coordinate structure [M. DiVaira and P. L. Orioli, *Chem. Commun.* (London), 590 (1965)], and we have observed that Co(Me₄dien)Cl₂ and Co(Et₄dien)Cl₂ have very similar electronic spectra in solid samples. We show in this paper that the surdure of Co-(Et₄dien)Cl₂ is the same in the solid and in acetone solution.

cause Pd(II) is effectively larger than Ni(II) as a central ion.

The Ni(Et₄dien)Cl⁺ complex in ethanol also does not undergo substitution by pyridine to give the fourcoordinate Ni(Et₄dien)(py)²⁺ complex. Instead, in the presence of a great excess of pyridine, a light blue solution forms which shows electronic spectral bands at 10,500, 17,600, and 27,800 cm⁻¹. This type of spectrum is typical of Ni(II)N₆ octahedral complexes,^{17,18} and thus we propose that the solution contains Ni(Et₄dien)(py)₃²⁺. The complex may be isolated as a light blue crystalline compound [Ni(Et₄dien)(py)₃]Cl₂, which is unstable and on standing loses pyridine to yield the red, diamagnetic [Ni(Et₄dien)Cl]Cl complex.

The Ni(Et₄dien)(py)₃²⁺ complex may also be obtained by cooling an ethanol solution containing pyridine and Ni(Et₄dien)Cl⁺ in a 3:1 mole ratio to about -40° . Analogous behavior is observed on cooling an ethanol solution containing [Ni(Et₄dien)Cl]Cl and excess Et_4 dien to -70° . At the low temperature the solution is green and shows an octahedral Ni(II) spectrum with bands at 9700, 15,900, and 26,200 cm⁻¹. Upon warming, the solution turns red again, affording square-planar Ni(Et₄dien)Cl⁺. An ethanol solution without excess Et₄dien (or pyridine) does not change from its room-temperature red color on cooling to -70° , and only the band at 18,800 cm⁻¹ is observed. Thus one reasonable possibility is that the green, lowtemperature form is Ni(Et₄dien)₂²⁺, although forms containing coordinated EtOH and two Et₄dien groups, in which one or both of the Et₄dien's is not fully tridentate, cannot be ruled out.

 $Co(Et_4dien)Cl_2$. The electronic absorption spectra of a solid sample of the $Co(Et_4dien)Cl_2$ complex is inconsistent with either tetrahedral or octahedral coordination for Co(II).¹⁷ Further, the marked difference in

(17) See C. J. Ballhausen, "Introduction to Ligand Field Theory,"
 McGraw-Hill Book Co., Inc., New York, N. Y., 1962, Chapter 10.
 (18) The d-d spectrum of [Ni(dien)₂]Cl₂ consists of maxima at 11,500,

(18) The d-d spectrum of $[Ni(dien)_2]C_{12}$ consists of maxima at 11,500, 18,500, and 28,800 cm⁻¹.

the X-ray powder patterns of $Co(Et_4dien)Cl_2$ and [Pd-(Et_4dien)Cl]Cl rules against a square-planar structure. Thus we assign a five-coordinate structure to the highspin $Co(Et_4dien)Cl_2$ complex in the solid. In support of the five-coordinate assignment, the $Co(Et_4dien)Cl_2$ complex is a nonelectrolyte in several solutions that exhibit spectral and magnetic properties not significantly different from a solid sample.

The Co(Et₄dien)Cl₂ complex, the five-coordinate modifications of Ni(Et₄dien)Cl₂ and Ni(Et₄dien)Br₂, and the aforementioned complexes^{9,10} discovered in Sacconi's laboratory represent examples of high-spin Ni(II) and Co(II) in five-coordination. We are now investigating the coordination geometry of Co(Et₄dien)Cl₂ by X-ray diffraction methods.

Rh(Et₄dien)Cl₃. With Rh(III) as the central metal ion, an octahedral complex of formula Rh(Et₄dien)Cl₃ is obtained on treating RhCl₃ with Et₄dien. The d⁶ Rh(III) central ion is very stable in octahedral coordination and, although the complex may be very strained, three chlorides are firmly attached to the bulky Rh-(Et₄dien)³⁺ system. The Rh(Et₄dien)Cl₃ complex is a nonelectrolyte in ethanol and DMF. In DMF the lowest electronic spectral band occurs at 23,800 cm⁻¹ (ϵ 440), which may be compared with the values 19,300 cm⁻¹ (ϵ 102) for RhCl₆³⁻ and 33,200 cm⁻¹ (ϵ 210) for Rh(en)₃^{3+.19}

Acknowledgments. We thank Professors W. H. Baddley and F. Basolo for their cooperation and encouragement. It is a pleasure to acknowledge stimulating conversations with several of the participants at the 1965 Bressanone Meeting on Coordination Chemistry, particularly Dr. M. Ciampoliní, Dr. C. K. Jorgensen, and Professor L. Sacconi. We gratefully acknowledge the National Science Foundation and Public Health Service Research Grant No. CA-07016-03 from the National Cancer Institute for support of this research.

(19) C. K. Jørgensen, Acta Chem. Scand., 10, 500 (1956).